Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Infect Genet Evol ; 118: 105559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266757

RESUMO

BACKGROUND: In this study, we have identified multiple mutations in the IL-12R1 gene among Pakistani patients who have inherited them through consanguineous marriages. These patients have experienced severe Bacille-Calmette-Guérin (BCG) infection as well as recurrent tuberculosis. We will demonstrate the pivotal role of interleukin (IL)-12/interferon (IFN)-γ axis in the regulation of mycobacterial diseases. METHODOLOGY: First, we checked the patients' medical records, and then afterward, we assessed interferon-gamma (IFN-γ) production through ELISA. Following that, DNA was extracted to investigate IL-12/IFN- abnormalities. Whole exome sequencing was conducted through Sanger sequencing. Secretory cytokine levels were compared from healthy control of the same age groups and they were found to be considerably less in the disease cohort. To evaluate the probable functional impact of these alterations, an in silico study was performed. RESULTS: The study found that the patients' PBMCs produced considerably less IFN-γ than expected. Analysis using flow cytometry showed that activated T cells lacked surface expression of IL-12Rß1. Exon 7 of the IL-12Rß1 gene, which encodes a portion of the cytokine binding region (CBR), and exon 10, which encodes the fibronectin-type III (FNIII) domain, were found to have the mutations c.641 A > G; p.Q214R and c.1094 T > C; p.M365T, respectively. In silico analysis showed that these mutations likely to have a deleterious effect on protein function. CONCLUSION: Our findings indicate the significant contribution of the IL-12/IFN-γ is in combating infections due to mycobacterium. Among Pakistani patients born to consanguineous marriages, the identified mutations in the IL-12Rß-1 gene provide insights into the genetic basis of severe BCG infections and recurrent tuberculosis. The study highlights the potential utility of newborn screening in regions with mandatory BCG vaccination, enabling early detection and intervention for primary immunodeficiencies associated with mycobacterial infections. Moreover, the study suggests at the potential role of other related genes such as IL-23Rß1, TYK2, or JAK2 in IFN-γ production, warranting further investigation.


Assuntos
Vacina BCG , Tuberculose , Recém-Nascido , Humanos , Consanguinidade , Sequenciamento do Exoma , Incidência , Receptores de Interleucina-12/genética , Tuberculose/epidemiologia , Tuberculose/genética , Interleucina-12/genética , Interleucina-12/metabolismo , Citocinas/genética , Interferon gama/metabolismo
2.
ACS Omega ; 9(1): 166-177, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222566

RESUMO

Proper management and control measurements are needed to stop the spread of highly pathogenic E. coli isolates that cause urinary tract infections (UTI) by developing new antibacterial agents to ensure the safety of public health. Therefore, the present investigations were used to achieve the synthesis of iron oxide nanoparticles (IONPs) via a simple coprecipitation method using ferric nitrates Fe (NO3)3 as the precursor and hydrazine solution as the precipitator and to explore the antibacterial activity against eradicating Uropathogenic Escherichia coli (E. coli). The synthesized IONPs were further studied using a UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopic (SEM) analysis. The maximum surface plasmon resonance peak was observed as absorption at 320 nm in a colloidal solution to validate the synthesis of IONPs. The FT-IR analysis was used to identify different photoactive functional groups that were responsible for the reduction of Fe (NO3)3 to IONPs. The crystalline nature of synthesized IONPs was revealed by XRD patterns with an average particle size ranging as 29 nm. The SEM image was employed to recognize the irregular morphology of synthesized nanoparticles. Moreover, significant antibacterial activity was observed at 1 mg/mL stock solution but after (125, 250, and 500 µg/mL) dilution, the synthesized IONPs showed moderate activity and became inactive at lower concentrations. The morphological and biochemical tests were used to confirm the presence of E. coli in the samples. Furthermore, the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were carried out to determine the inhibitory concentrations for the isolated bacteria. The isolated E. coli were also subjected to antibiotic sensitivity testing that showed high resistance to antibiotics such as penicillin and amoxicillin. Thus, the findings of this study were to use IONPs against antibiotic resistance that has been developed in an inappropriate way.

3.
J Infect Public Health ; 17(2): 189-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113816

RESUMO

Host impaired immunity and pathogens adhesion factors are the key elements in analyzing medical implant-associated infections (MIAI). The infection chances are further influenced by surface properties of implants. This review addresses the medical implant-associated pathogens and summarizes the etiology, pathology, and host-impaired immunity in MIAI. Several bacterial and fungal pathogens have been isolated from MIAI; together, they form cross-kingdom species biofilms and support each other in different ways. The adhesion factors initiate the pathogen's adherence on the implant's surface; however, implant-induced impaired immunity promotes the pathogen's colonization and biofilm formation. Depending on the implant's surface properties, immune cell functions get slow or get exaggerated and cause immunity-induced secondary complications resulting in resistant depression and immuno-incompetent fibro-inflammatory zone that compromise implant's performance. Such consequences lead to the unavoidable and straightforward conclusion for the downstream transformation of new ideas, such as the development of multifunctional implant coatings.


Assuntos
Aderência Bacteriana , Infecções Relacionadas à Prótese , Humanos , Aderência Bacteriana/fisiologia , Biofilmes , Propriedades de Superfície , Bactérias
4.
Ital J Pediatr ; 49(1): 95, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533075

RESUMO

BACKGROUND: Chronic Granulomatous Disease (CGD) is a primary immunodeficiency that causes susceptibility to recurrent fungal and bacterial infections. The CYBB gene encodes gp91phox component of the Phagocytic Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and specifically, X-linked CGD is caused by mutations in the CYBB gene, located on the X chromosome. The aim of the study was to characterize functional and genetic mutations in X-linked CGD. METHODS: Functional analysis was conducted on the whole blood of seventeen male individuals who were suspected to have X-linked chronic granulomatous disease (CGD). Flow cytometry was employed to assess the capacity of NADPH oxidase, measuring both H2O2 production and gp91phox protein expression in neutrophils. Additionally, DNA Sanger sequencing was performed for genetic analysis. The pathogenicity of novel mutations was assessed by pathogenicity prediction tools. RESULT: Among the seventeen patients evaluated, five patients (P1, P2, P3, P4, and P5) displayed impaired H2O2 production by their neutrophils upon stimulation with Phorbol myristate acetate (PMA), accompanied by abnormal gp91phox expression. DNA sequencing of the CYBB gene identified specific mutations in each patient. In P1 and P2 (previously reported cases), a hemizygous missense mutation, c.925G > A/p.E309K was identified. In P3 and P4 (novel cases), hemizygous nonsense mutations, c.216T > A/p.C72X were found. Lastly, in P5 (also a novel case), a hemizygous missense mutation, c.732T > G/p.C244W was detected. These mutations reside in exons 9,3 and 7 of the CYBB gene, respectively. CONCLUSIONS: The current study contributes to the understanding of the clinical and genetic spectrum associated with X-linked chronic granulomatous disease (CGD). It highlights the significance of early diagnosis in CGD and emphasizes the importance of lifelong prophylaxis to prevent severe infections.


Assuntos
Doença Granulomatosa Crônica , Humanos , Masculino , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/complicações , Peróxido de Hidrogênio , Paquistão , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Mutação , NADPH Oxidase 2/genética
5.
NPJ Aging ; 9(1): 21, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620330

RESUMO

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ß peptide, ß catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.

6.
J Infect Public Health ; 16(9): 1368-1378, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437430

RESUMO

BACKGROUND: The IL-12/23/ISG15-IFN-γ pathway is the main immunological pathway for controlling intra-macrophagic microorganisms such as Mycobacteria, Salmonella, and Leishmania spp. Consequently, upon mutations in genes of the IL-12/23/ISG15-IFN-γ pathway cause increased susceptibility to intra-macrophagic pathogens, particularly to Mycobacteria. Therefore, the purpose of this study was to characterize the mutations in genes of the IL-12/23/ISG15-IFN-γ pathway in severe tuberculosis (TB) patients. METHODS: Clinically suspected TB was initially confirmed in four patients (P) (P1, P2, P3, and P4) using the GeneXpert MTB/RIF and culturing techniques. The patients' Peripheral blood mononuclear cells (PBMCs) were then subjected to ELISA to measure Interleukin 12 (IL-12) and interferon gamma (IFN-γ). Flow cytometry was used to detect the surface expressions of IFN-γR1 and IFN-γR2 as well as IL-12Rß1and IL-12Rß2 on monocytes and T lymphocytes, respectively.The phosphorylation of signal transducer and activator of transcription 1(STAT1) on monocytes and STAT4 on T lymphocytes were also detected by flow cytometry. Sanger sequencing was used to identify mutations in the IL-12Rß1, STAT1, NEMO, and CYBB genes. RESULTS: P1's PBMCs exhibited reduced IFN-γ production, while P2's and P3's PBMCs exhibited impaired IL-12 induction. Low IL-12Rß1 surface expression and reduced STAT4 phosphorylation were demonstrated by P1's T lymphocytes, while impaired STAT1 phosphorylation was detected in P2's monocytes. The impaired IκB-α degradation and abolished H2O2 production in monocytes and neutrophils of P3 and P4 were observed, respectively. Sanger sequencing revealed novel nonsense homozygous mutation: c.191 G>A/p.W64 * in exon 3 of the IL-12Rß1 gene in P1, novel missense homozygous mutation: c.107 A>T/p.Q36L in exon 3 of the STAT1 gene in P2, missense hemizygous mutation:: c.950 A>C/p.Q317P in exon 8 of the NEMO gene in P3, and nonsense hemizygous mutation: c.868 C>T/p.R290X in exon 8 of CYBB gene in P4. CONCLUSION: Our findings broaden the clinical and genetic spectra associated with IL-12/23/ISG15-IFN-γ axis anomalies. Additionally, our data suggest that TB patients in Pakistan should be investigated for potential genetic defects due to high prevalence of parental consanguinity and increased incidence of TB in the country.


Assuntos
Interleucina-12 , Tuberculose , Humanos , Interleucina-12/genética , Interleucina-12/farmacologia , Interferon gama/genética , Leucócitos Mononucleares , Peróxido de Hidrogênio , Tuberculose/genética , Mutação
8.
Artigo em Inglês | MEDLINE | ID: mdl-36767896

RESUMO

Tuberculosis (TB) is a global health problem caused by the Mycobacterium tuberculosis complex (MTBC). These bacteria secrete various proteins involved in the pathogenesis and persistence of MTBC. Among the secretory proteins, MPT64 (Rv1980C) is highly conserved and is also known as a major culture filtrate that is used in rapid diagnosis of MTBC. In the current study, we aimed to find the mutation in this highly conserved protein in isolates from the Pashtun-dominant province of Pakistan. We analyzed 470 M. tuberculosis whole-genome sequences of Khyber Pakhtunkhwa Province. Mutations in the MPT64 gene were screened through TB-Profiler and BioEdit software tools. The DynaMut web server was used to analyze the impact of the mutation on protein dynamics and stability. Among 470 MTB genomes, three non-synonymous mutations were detected in nine isolates, and one synonymous mutation (G208A) was found in four isolates. Mutation G211T (F159L), which was detected at the C-terminal domain of the protein in six isolates, was the most prominent. The second novel mutation, T480C (I70V), was detected in two isolates at the C-terminal side of the protein structure. The third novel mutation, A491C (L66R), was detected in a single isolate at the N-terminal side of the MPT64 protein. The effect of these three mutations was destabilizing on the protein structure. The molecular flexibility of the first two mutations increased, and the last one decreased. MPT64 is a highly conserved secretory protein, harboring only a few mutations. This study provides useful information for better managing the diagnosis of MTB isolates in high TB-burden countries.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas de Bactérias/genética , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Paquistão , Tuberculose/diagnóstico , Tuberculose/genética , Tuberculose/microbiologia
9.
Biomed Res Int ; 2023: 1761283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845636

RESUMO

Background: The IL-12/IFN-γ axis pathways play a vital role in the control of intracellular pathogens such as Salmonella typhi. Objective: The study is aimed at using whole exome sequencing (WES) to screen out genetic defects in IL-12/IFN-γ axis in patients with recurrent typhoid fever. Methods: WES using next-generation sequencing was performed on a single patient diagnosed with recurrent typhoid fever. Following alignment and variant calling, exomes were screened for mutations in 25 genes that are involved in the IL-12/IFN-γ axis pathway. Each variant was assessed by using various bioinformatics mutational analysis tools such as SIFT, Polyphen2, LRT, MutationTaster, and MutationAssessor. Results: Out of 25 possible variations in the IL-12/IFN-γ axis genes, only 2 probable disease-causing mutations were identified. These variations were rare and include mutations in IL23R and ZNFX I. Other pathogenic mutations were found, but they were not considered likely to cause disease based on various mutation predictors. Conclusion: Applying WES to the patient with recurrent typhoid fever detects variants that are not much important as other genes in the IL-12/IFN-γ axis. Results of the current study suggest that a large population sizes would be needed to examine the functional relevance of IL-12/IFN-γ axis genes with recurrent typhoid fever.


Assuntos
Febre Tifoide , Humanos , Exoma/genética , Interferon gama/genética , Interleucina-12/genética , Mutação/genética , Análise de Sequência , Febre Tifoide/genética , Recidiva
10.
PLoS One ; 18(1): e0281102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706132

RESUMO

Cellulose and chitin are the most abundant naturally occurring biopolymers synthesized in plants and animals and are used for synthesis of different organic compounds and acids in the industry. Therefore, cellulases and chitinases are important for their multiple uses in industry and biotechnology. Moreover, chitinases have a role in the biological control of phytopathogens. A bacterial strain Bacillus subtilis TD11 was previously isolated and characterized as a putative biocontrol agent owing to its significant antifungal potential. In this study, cellulase and chitinase produced by the strain B. subtilis TD11 were purified and characterized. The activity of the cellulases and chitinases were optimized at different pH (2 to 10) and temperatures (20 to 90°C). The substrate specificity of cellulases was evaluated using different substances including carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and crystalline substrates. The cellulase produced by B. subtilis TD11 had a molecular mass of 45 kDa while that of chitinase was 55 kDa. The optimal activities of the enzymes were found at neutral pH (6.0 to 7.0). The optimum temperature for the purified cellulases was in the range of 50 to 70°C while, purified chitinases were optimally active at 50°C. The highest substrate specificity of the purified cellulase was found for CMC (100%) followed by HEC (>50% activity) while no hydrolysis was observed against the crystalline substrates. Moreover, it was observed that the purified chitinase was inhibitory against the fungi containing chitin in their hyphal walls i.e., Rhizoctonia, Colletotrichum, Aspergillus and Fusarium having a dose-effect relationship.


Assuntos
Celulase , Celulases , Quitinases , Animais , Bacillus subtilis , Antifúngicos/química , Quitinases/farmacologia , Quitinases/química , Celulose , Quitina
11.
Brief Funct Genomics ; 22(2): 168-179, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35868449

RESUMO

Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), encodes a family of membrane proteins belonging to Resistance-Nodulation-Cell Division (RND) permeases also called multidrug resistance pumps. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in exporting of lipid components across the cell envelope. These proteins perform an essential role in MTB survival; however, there are no data regarding mutations in MmpL, polyketide synthase (PKS) and acyl-CoA dehydrogenase FadE proteins from Khyber Pakhtunkhwa, Pakistan. This study aimed to screen mutations in transmembrane transporter proteins including MmpL, PKS and Fad through whole-genome sequencing (WGS) in local isolates of Khyber Pakhtunkhwa province, Pakistan. Fourteen samples were collected from TB patients and drug susceptibility testing was performed. However, only three samples were completely sequenced. Moreover, 209 whole-genome sequences of the same geography were also retrieved from NCBI GenBank to analyze the diversity of mutations in MmpL, PKS and Fad proteins. Among the 212 WGS (Accession ID: PRJNA629298, PRJNA629388, and ERR2510337-ERR2510345, ERR2510546-ERR2510645), numerous mutations in Fad (n = 756), PKS (n = 479), and MmpL (n = 306) have been detected. Some novel mutations were also detected in MmpL, PKS and acyl-CoA dehydrogenase Fad. Novel mutations including Asn576Ser in MmpL8, Val943Gly in MmpL9 and Asn145Asp have been detected in MmpL3. The presence of a large number of mutations in the MTB membrane may have functional consequences on proteins. However, further experimental studies are needed to elucidate the variants' effect on MmpL, PKS and FadE functions.


Assuntos
Acil-CoA Desidrogenases , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética , Acil-CoA Desidrogenases/genética , Acil-CoA Desidrogenases/metabolismo , Acil-CoA Desidrogenases/farmacologia
12.
Tuberculosis (Edinb) ; 138: 102286, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463715

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health issue in Pakistan. Isoniazid is a first-line pro-drug that requires activation through an enzyme called catalase peroxidase, but is subject to widespread resistance, driven by mutations in katG and inhA genes and other loci with compensatory effects (e.g., ahpC). Here, we used whole genome sequencing data from 51 M. tuberculosis isolates collected from Khyber Pakhtunkhwa province (years 2016-2019; all isoniazid phenotypically resistant) to investigate the genetic diversity of mutations in isoniazid candidate genes. The most common mutations underlying resistance were katG S315T (37/51), fabG1 -15C>T (13/51; inhA promoter), and inhA -154G>A (7/51). Other less common mutations (n < 5) were also identified in katG (R128Q, V1A, W505*, A109T, D311G) and candidate compensatory genes ahpC (-54C>T, -51G>A) and oxyS (M249T). Using DynaMut2 software, the mutants exhibited various degrees of stability and flexibility on protein structures, with some katG mutations leading to a decrease in KatG protein flexibility. Overall, the characterisation of circulating isoniazid resistant-linked mutations will assist in drug resistant TB management and control activities in a highly endemic area of Pakistan.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Isoniazida/farmacologia , Antituberculosos/farmacologia , Paquistão/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose/microbiologia , Mutação , Catalase/genética , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
13.
J Infect Public Health ; 15(11): 1175-1179, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228565

RESUMO

BACKGROUND: Leishmaniasis is the second and fourth highest cause of mortality and morbidity respectively among all tropical diseases. Recurrence in the onset of leishmaniasis is a major problem that needs to be addressed to reduce the case fatality rate and ensure timely clinical intervention. Here we are investigating the association of risk factors with recurrent cutaneous leishmaniasis to address this issue. MATERIAL AND METHODS: Patients received by Nasser Ullah Khan Babar Hospital in Peshawar, Pakistan from March 2019 to July 2020 were enrolled in this study. Those patients who developed symptoms after completion of treatment were included in Group-A while those who had atypical scars like leishmaniasis but were negative for cutaneous leishmaniasis were included in the comparison group tagged as Group B. All those individuals who had completed six weeks of treatment for CL but had normal complete blood counts (CBC) were included to avoid other underlying immunological pathologies, while we excluded those participants who had co-morbidities like diabetes, liver disease, cardiac disease, and pregnant and lactating women through their history Association was tested between Group-A and Group-B with other explanatory variables through chi-square test. The regression model was proposed to determine the predictors. RESULT: A total of 48 participants of both sexes were included in the study with a mean age of 32.2 ± 15.10. The data suggest that females are overrepresented among the patients with recurrent leishmaniasis [21(53.8 %,); p = 0.07]. Compared to patients; healthy participants had a higher proportion of adults (19-59 years) versus adolescents (13-18 years) [26(66.7 %) vs 07(17.9), p = 0.004]. Multivariate logistic regression analysis shows that females are 2.1 times more prone to infections among cases as compared to healthy individuals [unadjusted OR 2.20, 95 % confidence interval (CI) 1.5-10.6, p = 0.02; adjusted OR 2.1, 95 % CI 1.50-10.69, p = 0.02]. We propose that patients receiving intradermal were less likely to be infected as compared to those receiving intralesional injections [unadjusted OR 0.07.0, 95 % confidence interval (CI) 1.18-3.37, p = 0.03; adjusted OR 0.06, 95 % CI 1.18-3.38, p = 0.03]. CONCLUSION: Old age (adults) and sex (females) were the strongest predictors to be associated with recurrent leishmaniasis. Similarly, the choice of intradermal as compared to intralesional injection and the prolonged treatment duration were strongly associated with greater chances of recurrence.


Assuntos
Lactação , Leishmaniose Cutânea , Masculino , Adulto , Adolescente , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Estudos Transversais , Paquistão/epidemiologia , Leishmaniose Cutânea/epidemiologia , Fatores de Risco
14.
Artigo em Inglês | MEDLINE | ID: mdl-35805584

RESUMO

Background: Cancer patients, being immunocompromised, are at higher risk of coronavirus disease (COVID-19). The current study determines cancer patients' knowledge, attitude, perception, and impact of the COVID-19 pandemic. Method: A cross-sectional online survey was conducted in Pakistan from 1 April 2020 to 1 May 2020. The study respondents were cancer patients with ages equal to or greater than 18 years. Following a request for participation, the URL for the survey was distributed on numerous channels. Other social media platforms, including WeChat, WhatsApp, Facebook, Twitter, Instagram, Messenger, and LinkedIn, were used to increase cancer patient interaction. The questionnaire comprised five different sections such as: (1) sociodemographic information, (2) knowledge, (3) attitude, (4) perception, and (5) impact of COVID-19 on cancer patients. Descriptive medical statistics such as frequency, percentage, mean, and standard deviation were used to illustrate the demographic characteristics of the study participants. To compare mean knowledge scores with selected demographic variables, independent sample t-tests and one-way analysis of variance (ANOVA) were used, which are also practical methods in epidemiological, public health and medical research. The cut-off point for statistical significance was set at a p-value of 0.05. Results: More than 300 cancer patients were invited, of which 208 agreed to take part. The response rate was 69.33% (208/300). Gender, marital status, and employment status had a significant association with knowledge scores. Of the total recruited participants, 96% (n = 200) (p < 0.01) knew about COVID-19, and 90% were aware of general symptoms of COVID-19 disease, such as route of transmission and preventive measurements. In total, 94.5% (n = 197) (p < 0.01) were willing to accept isolation if they were infected with COVID-19, and 98% (n = 204) (p < 0.01) had reduced their use of public transportation. More than 90% (n = 188) (p < 0.01) of cancer patients were found to be practicing preventative measures such as using a face mask, keeping social distance, and avoiding handshaking and hugging. Around 94.4% (n = 196) (p < 0.01) of cancer patients had been impacted by, stopped or had changed cancer treatment during this pandemic, resulting in COVID-related anxiety and depression. Conclusion: The included cancer patients exhibited a good level of COVID-19 knowledge, awareness, positive attitude, and perception. Large-scale studies and efforts are needed to raise COVID-19 awareness among less educated and high-risk populations. The present survey indicates that mass-level effective health education initiatives are required for developing countries to improve and reduce the gap between KAP and COVID-19.


Assuntos
COVID-19 , Neoplasias , Adolescente , COVID-19/epidemiologia , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Neoplasias/epidemiologia , Paquistão/epidemiologia , Pandemias/prevenção & controle , Percepção , SARS-CoV-2 , Inquéritos e Questionários
15.
Sci Rep ; 12(1): 7703, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545649

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, is a high-burden disease in Pakistan, with multi-drug (MDR) and extensive-drug (XDR) resistance, complicating infection control. Whole genome sequencing (WGS) of M. tuberculosis is being used to infer lineages (strain-types), drug resistance mutations, and transmission patterns-all informing infection control and clinical decision making. Here we analyse WGS data on 535 M. tuberculosis isolates sourced across Pakistan between years 2003 and 2020, to understand the circulating strain-types and mutations related to 12 anti-TB drugs, as well as identify transmission clusters. Most isolates belonged to lineage 3 (n = 397; 74.2%) strain-types, and were MDR (n = 328; 61.3%) and (pre-)XDR (n = 113; 21.1%). By inferring close genomic relatedness between isolates (< 10-SNPs difference), there was evidence of M. tuberculosis transmission, with 55 clusters formed consisting of a total of 169 isolates. Three clusters consist of M. tuberculosis that are similar to isolates found outside of Pakistan. A genome-wide association analysis comparing 'transmitted' and 'non-transmitted' isolate groups, revealed the nusG gene as most significantly associated with a potential transmissible phenotype (P = 5.8 × 10-10). Overall, our study provides important insights into M. tuberculosis genetic diversity and transmission in Pakistan, including providing information on circulating drug resistance mutations for monitoring activities and clinical decision making.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação , Paquistão/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/transmissão
16.
Curr Microbiol ; 79(4): 118, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220467

RESUMO

The rapid emergence of resistance to third-generation cephalosporins in Shigella flexneri is crucial in pediatric shigellosis management. Limited studies have been conducted on molecular pattern of antibiotic resistance of S. flexneri in diarrhea endemic areas of Pakistan. The aim of the study was to analyze the antimicrobial resistance of S. flexneri isolated from pediatric diarrheal patients in Peshawar, Pakistan. A total of 199 S. flexneri isolates (clinical, n = 1 55 and non-clinical, n = 44) were investigated for drug resistance and mutational analysis of selected drug resistance genes. All isolates were found to be highly resistant to amoxicillin/clavulanic acid (88%), followed by trimethoprim-sulfamethoxazole (77%), chloramphenicol (43%), and quinolones (41.6%). About 34.5% S. flexneri isolates were found to be resistant to third-generation cephalosporin. None of the isolates was resistant to imipenem, piperacillin-tazobactam, and amikacin. Interestingly high frequency of third-generation cephalosporin resistance was observed in S. flexneri isolated from non-clinical samples (49%) when compared to clinical samples (30.5%). Furthermore, the most prevalent phenotypic-resistant patterns among third-generation cephalosporin-resistant isolates were AMC,CAZ,CPD,CFM,CRO,SXT (13%) followed by OFX,AMC,CAZ,CPD,CFM,CRO,SXT,NA,CIP (10%). The most frequently detected resistance genes were trimethoprim-sulfamethoxazole (sul2 = 84%), beta-lactamase genes (blaOXA = 87%), quinolones (qnrS = 77%), and chloramphenicol (cat = 64%). No mutation was detected in any drug-resistant genes. We are reporting for the first time the sequence of the blaTEM gene in S. flexneri. Furthermore, high third-generation cephalosporin resistance was observed in the patients who practiced self-medication as compared to those who took medication according to physician prescription. This study shows the high emergence of third-generation cephalosporin-resistant S. flexneri isolates, which is a potential threat to the community in the country. This finding will be helpful to develop a suitable antibiotic prescription regime to treat shigellosis.


Assuntos
Disenteria Bacilar , Shigella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência às Cefalosporinas/genética , Criança , Farmacorresistência Bacteriana/genética , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Paquistão/epidemiologia , Shigella flexneri
17.
Int J Infect Dis ; 112: 338-345, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438084

RESUMO

BACKGROUND: The IL-12/IFN-γ axis plays a vital role in the control of intramacrophagic pathogens including Leishmania infections. OBJECTIVE: The aim of this study was to investigate genetic defects in the IL-12/IFN-γ axis in cutaneous leishmaniasis patients, using immunological and genetic evaluation. METHODS: Enzyme-linked immunosorbent assay was used to quantify IFN-γ , while flow cytometry was performed to analyze surface IL-12Rß1/IL-12Rß2 expression and phosphorylation of signal transducers as well as the activator of transcription 4 (pSTAT4). Sequencing was carried out for genetic analysis. RESULTS: The peripheral blood mononuclear cells from the two patients (P1 and P2) demonstrated impaired production of IFN-γ. Furthermore, abolishment of the surface expression of Il-12Rß1 was observed in lymphocytes, with consequent impairment of STAT4 phosphorylation in the lymphocytes of P1 and P2. IL-12Rß1 deficiency was identified, which was caused by a novel homozygous missense mutation (c.485>T/p.P162L) and a novel homozygous nonsense mutation (c.805G>T/P.E269*) in the IL-12Rß2 gene of P1 and P2, respectively. In silico analyses predicted these novel mutations as being pathogenic, causing truncated proteins, with consequent inactivation. CONCLUSION: Our data have expanded the phenotype and mutation spectra associated with IL-12Rß1 deficiency, and suggest that patients with CL should be screened for mutations in genes of the IL-12/IFN-γ axis.


Assuntos
Leishmaniose Cutânea , Leucócitos Mononucleares , Receptores de Interleucina-12 , Humanos , Interferon gama/genética , Interleucina-12 , Leishmaniose Cutânea/genética , Receptores de Interleucina-12/genética , Recidiva
19.
Sci Rep ; 11(1): 14194, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244539

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is endemic in Pakistan. Resistance to both firstline rifampicin and isoniazid drugs (multidrug-resistant TB; MDR-TB) is hampering disease control. Rifampicin resistance is attributed to rpoB gene mutations, but rpoA and rpoC loci may also be involved. To characterise underlying rifampicin resistance mutations in the TB endemic province of Khyber Pakhtunkhwa, we sequenced 51 M. tuberculosis isolates collected between 2016 and 2019; predominantly, MDR-TB (n = 44; 86.3%) and lineage 3 (n = 30, 58.8%) strains. We found that known mutations in rpoB (e.g. S405L), katG (e.g. S315T), or inhA promoter loci explain the MDR-TB. There were 24 unique mutations in rpoA, rpoB, and rpoC genes, including four previously unreported. Five instances of within-host resistance diversity were observed, where two were a mixture of MDR-TB strains containing mutations in rpoB, katG, and the inhA promoter region, as well as compensatory mutations in rpoC. Heteroresistance was observed in two isolates with a single lineage. Such complexity may reflect the high transmission nature of the Khyber Pakhtunkhwa setting. Our study reinforces the need to apply sequencing approaches to capture the full-extent of MDR-TB genetic diversity, to understand transmission, and to inform TB control activities in the highly endemic setting of Pakistan.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Modelos Moleculares , Mutação/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/genética , Paquistão/epidemiologia , Filogenia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
20.
J Food Sci ; 86(6): 2579-2589, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34056725

RESUMO

This study was designed to investigate the prevalence and associated risk factors of Shigella flexneri isolated from drinking water and retail raw food samples in Peshawar, Pakistan. A total of 1,020 different samples were collected from various areas of Peshawar between January 2016 and May 2017, followed by identification of S. flexneri through biochemical, serological, and 16S rRNA gene sequencing. Potential risk factors associated with the development and spreading of S. flexneri infection were also investigated. Overall, 45 (4.41%) samples were positive for Shigella species. Among these samples, the predominant species was S. flexneri (n = 44) followed by S. boydii (n = 1). Interestingly, S. sonnei and S. dysenteriae isolates were not found in any sample. The isolation rate of S. flexneri in drinking water samples, market raw milk, and fruits/vegetables from Peshawar were 6.47%, 3.5%, and 2.9%, respectively. The phylogenetic reconstruction showed genetic diversity among three clades, as clades I and II have isolates of S. flexneri that were circulating within the drinking water, milk, fruits/vegetables, while clade III isolates were recovered from milk samples. Most of S. flexneri were detected in June to September. Potential risk factors of S. flexneri were water sources contaminated by toilet wastes (p = 0.04), surface water drainage (p = 0.0002), hospital wastes (p = 0.01), unhygienic handling (p < 0.05), and transportation of raw food (p = 0.04). In conclusion, S. flexneri isolates of closely related lineage originating from non-clinical samples might be associated with an increased human risk to shigellosis in Pakistan, as significant numbers of S. flexneri were observed in the drinking water and retail raw food samples. PRACTICAL APPLICATION: This study demonstrated the presence of S. flexneri in drinking water and retail raw food samples which seem to possess a serious threat to public health. Potential sources of food and water contamination should properly be monitored by public health authorities to reduce cases of shigellosis.


Assuntos
Água Potável/microbiologia , Disenteria Bacilar/epidemiologia , Alimentos Crus/microbiologia , Shigella flexneri/isolamento & purificação , Disenteria Bacilar/microbiologia , Humanos , Paquistão/epidemiologia , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Fatores de Risco , Shigella flexneri/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...